Navid Hosseini
Journal of Seismology, DOI: 10.1007/s10950-017-9654-4
Publication year: 2017

Rockburst is a typical dynamic disaster in underground coal mines which its occurrences relate to the mechanical quality of coal seam and surrounding rock mass and also the condition of stress distribution. The main aim of this paper is to study the potential of rockburst in a longwall coal mine by using of passive seismic velocity tomography and image subtraction technique. For this purpose, first by mounting an array of receivers on the surface above the active panel, the mining-induced seismic data as a passive source for several continuous days were recorded. Then, the three-dimensional tomograms using simultaneous iteration reconstruction technique (SIRT) for each day are created and by employing the velocity filtering, the overstressed zones are detected. In addition, the two-dimensional seismic velocity tomograms in coal seam level by slicing the three-dimensional tomograms are obtained. Then the state of stress changes in successive days by applying the image subtraction technique on these two-dimensional tomograms is considered. The results show that the compilation of filtered three-dimensional tomograms and subtracted images is an appropriate approach for detecting the overstressed zones around the panel and subsequent evaluation of rockburst potential. The research conclusion proves that the applied approach in this study in combination with field observations of rock mass status can effectively identify the rockburst-prone areas during the mining operation and help to improve the safety condition.